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Symmetries of non-linear differential equations and 
linearisation 
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Department of Applied Mathematics, The University of the Witwatersrand, 1 Jan Smuts 
Avenue, Johannesburg, South Africa 2001 

Received 10 December 1985, in final form 2 May 1986 

Abstract. A non-linear ordinary differential equation is linearisable if it posseses SL(3,  3) 
symmetry. The conditions under which the Abelian two-dimensional subalgebras ofsl(3, % ) 
are sufficient for linearisation are established. 

1. Introduction 

The Lie theory of extended groups has regained a lot of attention in recent studies of 
ordinary and partial differential equations. Knowing point symmetries of ordinary 
differential equations generally allows one to reduce the order of the equations (see, 
e.g., Bluman and Cole 1974, Ovsiannikov 1978). Alternatively, one can exploit the 
symmetries to construct first integrals for the given equations. When the equations are 
of Lagrangian type, this is most easily done in the context of Noether’s theorem, but 
it has been pointed out by many authors that the point symmetries of Noether type 
d o  not exhaust the point symmetries of the differential equations (see, e.g., Lutzky 
1978, Prince and Eliezer 1981, Wulfman and Wybourne 1976, Leach 1981). Concerning 
a single second-order equation, we know from Lie’s counting theorem that there can 
be at most eight point symmetries (Ovsiannikov 1978, Anderson and  Davison 1974). 
It is further known that all linear equations d o  have a full eight-parameter group of 
symmetries which is SL(3, 9). Mahomed and Leach (1985) recently added a new 
element to the discussion in investigating a non-linear equation of the type 

(1) 

which itself arose in a study of the generalised Emden equation (Leach 1985). They 
found that such an  equation has only two point symmetries, unless a2 = 9p, in which 
case there are eight symmetries, whose generators again exhibit the sI(3, 9) commuta- 
tion relations. The latter result means that there exists a point transformation, reducing 
the equation to any linear equation (such as the free particle equation) and that the 
non-linear equation accordingly can be readily solved. They further inferred from this 
example that any non-linear equation may have the S L ( 3 , 9 )  group, provided it has 
eight symmetries. Certainly, in view of the invariance of the commutation relations 
of symmetry generators under arbitrary point transformations, having S L ( 3 , 9 )  sym- 
metry is a necessary and  sufficient condition for a second-order differential equation 

4 + aq4 + pq3 = 0 
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to be linearisable (by which we mean linearisable through a point transformation). 
The question then arises whether we need to know the full eight symmetry generators 
of an equation before we can conclude that the linearisation will exist. The following 
property (cf Lie 1891) will be the starting point for the investigation of this paper. 

Proposition. In  order that a second-order ordinary differential equation has the s1(3,9?) 
algebra, it is necessary and  sufficient that it has the nilpotent algebra 

[GI, G J = O  [Gz, G,1=0 [GI 9 G31 = G* ( 2 )  

henceforth referred to as U. 

Proof: For a general second-order equation ;i = f ( q ,  q, r), we write the generator of a 
point symmetry in the form 

(3) 

Assuming that the equation has the algebra K then means that we have three symmetry 
generators G, , G2, G3, satisfying the commutation relations (2).  

If this is the case, we cannot have that both GI = p ( q ,  t)G2 and G3 = $(q ,  t )G2 (for 
suitable functions p and I ) )  as the first two commutations then would imply G,(p) = 0, 
G,( I ) )  = 0, which in turn would lead to [ G I ,  G,] = 0, contradicting the last relation in 
( 2 ) .  Without loss of generality, we may therefore assume that no function p exists 
such that GI = pG,. As a result, there exists a regular point transformation Q = Q( q, t ) ,  
T = T ( q ,  t ) ,  transforming the generators GI and G2 to the standard form 

G = d t ,  q ) a l a t  + 5 ( t .  q)a/aq. 

GI = a/aT G, = a/aQ. (4) 

Representing, in these coordinates, G3 in a general form like (3),  it follows from the 
commutation relations involving G3 that one must have 

a T / a Q  = o ag/aQ = o &/aT=O a g / a T =  1. 

Therefore (disregarding constant multiples of dl and G2), the transformed equation 
must have the symmetry 

d, = T a/aQ. ( 5 )  

From (4) it is obvious that the right-hand side of the differential equation for Q cannot 
depend on T and Q. Expressing the invariance with respect to the generator (5)  then 
straightforwardly shows that it cannot depend on Q’= d Q / d T  as well. The transformed 
equation will thus be of the form Q”=  constant (Lie 1891), which is an  obviously linear 
differential equation and consequently has SL(3, 9) symmetry. The original equation 
in q accordingly has the same symmetry, which completes the proof of the sufficiency. 
The necessity is trivial because K is a subalgebra of sI(3, 9). 

Remark. Whenever a non-linear differential equation is found to have eight symmetry 
generators, the above result also contains a hint for actually trying to construct a 
coordinate transformation which does the linearisation. Indeed, it will be advantageous 
to search for three combinations of the obtained generators which constitute K. If this 
can be done, a linearisation will follow from transforming two of the commuting 
symmetries to the standard form (4). 



Symmetries of non-linear diferential equations 279 

One can push the question which has been dealt with in the above proposition a 
bit further and  ask whether linearisability will not even follow from assuming less than 
the three-dimensional algebra K.  This is indeed the case. As a matter of fact, it follows 
from our argumentation that to within removing from G3 a constant multiple of G , ,  
G, and G, commute and  further satisfy G, = I,$( t ,  q)G, for some function I,$. This 
implies the existence of a coordinate transformation (already established by Lie (1891)) 
transforming the generators to 

G, = a /dQ G, = T a / a Q  (6) 

as a result of which the differential equation appears in the form Q"= F (  T ) .  Once 
again this is a linear equation having SL(3, 3) symmetry. 

The other subalgebra of ( 2 )  constitutes a more appealing subject for further study, 
if only because it is not trivial. Having two commuting symmetries which are indepen- 
dent means that the differential equation transforms to the general form (Lie 1891) 

Q" = F (  Q')  (7) 

which in itself is already a significant reduction, since equations of type (7) may be 
solved by two consecutive quadratures. In the following sections, we wish to investigate 
the possible existence of more symmetries for (7), thereby keeping an eye on the 
identification of further criteria which will ensure linearisability. 

2. The symmetry conditions for a class of non-linear equations 

Starting from the assumption that the equations under investigation have two indepen- 
dent commuting symmetries, we take the preliminary transformation to the standard 
form (4) of these symmetries for granted and  rewrite the resulting equation in lower 
case variables as 

4 = f ( 4 ) .  (8) 

A generator of the form (3) will be a symmetry for (8) if and only if 7 and 5 satisfy 
the following requirement (invariance of (8)  under the second extension of G) :  

5 f f + 4 ( 2 5 , , - 7 f f ) + q 2 ( 5 , ,  - 2 . r f , ) - 4 3 T q q + ( S q - 2 T  - 3 4 . , ) f = [ 5 , + 4 ( 5 , - T , ) - 4 * T q 1 f ,  
(9) 

where the suffices refer to partial derivatives. 
It is impossible to proceed further with such a complicated equation without making 

further assumptions about the nature of the function f(4) .  The polynomial character 
in q of all the coefficients in (9) strongly suggests looking at the case wheref itself is 
a polynomial. Obviously we are not interested in the case that f is linear in 4. Suppose 
then that the leading order term in f is of degree n with n 3 3. We write 

f =  kq" + r q n - '  + . . . . 

( n - 3 ) k7, = 0 

( n - 4) hq + k [  ( n  - 2 )  7, - ( fl  - 1)&] = Tqq8,,3 

Looking at the coefficients of 4"+'  and 4" in (9),  we then obtain the following conditions: 

(10) 

(11) 

where 8n3 is the Kronecker delta. 
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For any n greater than 3 ,  it is clear that (10) and (11) allow r at most to be a 
function o f t  and 6 to be a linear function in q with possible time-dependent coefficients. 
One can subsequently look at the terms of degree 0, 1 and  2 in (9) and  infer from a 
simple analysis that in the most favourable case there can be at most three symmetry 
generators, provided the coefficients in f satisfy a number of algebraic relations. The 
bigger n is, the larger the number of such restrictions on the coefficients will be so 
that the chances of obtaining more than the two given symmetries become smaller 
with increasing n. In conclusion, linearisability is certainly not possible for a polynomial 
f of degree greater than three and the case n = 3 appears to be of a peculiar nature, 
because it is the only case for which the coefficients of the highest-order terms in (9) 
automatically cancel out, leaving the possibility for a non-trivial q dependence in T. 
For all these reasons, we further restrict ourselves to polynomials of degree 3. For 
completeness, we study the quadratic polynomial case in an  appendix. The reader 
may find some similarities between our analysis and  a recent paper by Aguirre and 
Krause (1985). These authors also treat the case of a polynomial of degree 3 (with 
coefficients possibly depending on q and t ) .  However they merely compute the 
commutation relations of symmetry generators, without investigating the conditions 
under which such generators exist and without analysing the nature of the resulting 
algebra, nor the question of linearisabilty. 

Considering a differential equation of the form 

q = g q 3  + aq’+ bq + c g f O  (12) 

where all coefficients are constant, we can make a preliminary rescaling of time to 
make the coefficient of the high-order term equal to one. Having done so, a transforma- 
tion of the form 

q = Q-faT  t = T  (13) 

will eliminate the quadratic term on the right-hand side. So, without loss of generality, 
we may assume that g = 1, a = 0 in ( 1 2 )  and therefore restrict our attention to equations 
of the form 

q = q 3 + b q + c .  (14) 

Let us repeat first of all that an equation like (14) can certainly be solved by two 
quadratures. Being able to solve a differential equation does not necessarily mean, 
however, that the same equation can be linearised by a point transformation. Among 
other things, we wish to find out under what circumstances a linearisation for (14) 
exists, thereby keeping in mind that we regard (14) as a represenative of a whole class 
of differential equations which can be transformed to it once two commuting symmtries 
are known. It will appear soon that the study of the full symmetry group of (14) is 
quite interesting in its own right. 

With a n f ( 4 )  as in (14), equating the coefficients of like powers of 4 in the symmetry 
condition (9) give rise to the following set of partial differential equations: 

rqq + 25, - r, = 0 (15) 

2brq+3[,-5, ,+2r, ,  = O  (16) 

br, + 3c7, -2&, + 7,, = 0 (17)  

b& - c5$ + 2c7, - t,, = 0. (18) 
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We can solve (15) for t4 and use the result to solve (16) for tr, thus obtaining 

5 4  = 1( 7, - 7 4 4  (19) 

(20) 

Substituting these expressions into ( 1 7 )  and (18) we obtain two partial differential 
equations involving r alone. Expressing in addition that we want the system (19) and 
(20) to be completely integrable for 6 we end up with the following requirements on 
r (because of the order of the equations,, it is preferable to abandon the index notation 
for partial derivatives at this stage): 

5 r = - L (  6 Tqqq+33~q+4bTq). 

a37 ar a 7  

a t a q -  aq  a t  
,+3c-+b-=O 

a4r a3r a'r a'7 $7 a 7  
-- b 7 + 3 -  + 3 c--; + b- - 4b2-+ 9 ~ -  = 0 
a t a q '  a q -  a t ' aq  a q -  a t a q  aq  a t  

The strategy now is clear: we have to solve the above equations for T first, after which 
(19) and (20) will determine the corresponding components 5 of symmetry generators. 
Before embarking upon this task, let us try to simplify the equations for r. In  the first 
place, using a /aq  of condition (21), (22) readily simplifies to 

Next, observe that the combination ( 21)44-(23)1 results in a homogeneous third-order 
partial differential equation for T, namely 

a37 a 3 T  a37 

at '  a taq  aq  
-+ b y  - CY = 0. 

In order to see whether (25) can actually replace the fourth-order equation (23), 
suppose conversely that 7 is a solution of the set of equations (21), (24) and (25). 
Then, we can arrive at an  equation of type (23) in two different ways. Indeed, it is 
straightfoward to verify that 

(24 ) , -3 (21) , -6 (23)  

3(25), - (24 ) ,  - 4 b ( 2 1 ) , - ~ ( 2 3 ) .  

Therefore we distinguish two cases. 

Case  I. b and c not both zero. I t  then follows from the above observations that the 
original conditions on r can equivalently be replaced by the set of third-order conditions 
(21), (24) and (25). 

Case  II. b = c = 0. The requirements for 7 readily simplify to 
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Remark. There is still a certain amount of redundancy hidden in the conditions for 
case I .  For example, when b = 0 ( c  # 0) one can show that, apart from the homogeneous 
equation (25), the other requirements integrate to the single condition T , ~  + 3cr = 
constant. On the other hand, for b # 0 we have seen above that (21) and  (24) actually 
imply (23) and therefore also (25). It is, however, more convenient to study first the 
solutions of the homogeneous equation (25) anyway and in doing so it will turn out 
that a discussion about b being zero or not is rather irrelevant. 

All partial differential equations for T we have been dealing with have certain 
remarkable properties which can be of great help in constructing particular solutions. 
Consider for example equation (21) which we rewrite in the form 

d ( f i + b r )  +?(3cr)=O. 
a t  aq2 aq 

This form implies that there must exist a function 4 such that 

34 a27 84 ,+br=- 
aq as a t  

-3CT=-. 

One can easily verify that if T is a particular solution of (21), then the function 4 
generated by (27) is another particular solution of the same equation. In other words, 
(27) is a so-called auto-Backlund transformation for (21) (Rogers and Shadwick 1982). 
The general property behind this observation is as follows. Consider two relations of 
the form 

av a'+Ju au 
a x k  ay' ax' ay ax 

+ c u = -  b - + e u = -  
a k + L  

a- 

where a, b, c and e are constants. Expressing the integrability condition uxy = uyx 
results in a partial differential equation to be satisfied by U .  Eliminating, on the other 
hand, the derivatives of U from (28) by calculating the combination 

and making use of (28) again to express everything in terms of U, results in exactly 
the same partial differential equation to be satisfied by U. 

Returning to our equations for T one can observe that there are actually different 
ways of rewriting some of them in a form like (28) and there is always one particular 
solution at hand, namely T = constant. Through the process of (27), for example, this 
solution will generate an infinite number of polynomial in q and t solutions of equation 
(21), which of course will be drastically limited by the restrictions coming from the 
other equations. We will not use this technique here, because the general solution of 
our equations (21), (24), and (25) can be obtained in a straightforward manner. 

3. Obtaining the full symmetry group 

3.1. Triple root case 

We start with the simple case 11, for which we have to solve equations (26). The first 
of these implies that T must be of the form 

T =Ad+ h ( t ) q  +df) (29) 
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and the functions f, g, h are then bound to satisfy the additional restrictions 

I;'=() f '"++3g =o.  

r = c ,  + c , q +  c,q2+ C&3+ c , t+  c , q +  c , (q4-4 t2) .  

As a result, the general solution for 7 is given by 

(30) 

There are seven arbitrary constants in this expression, which give rise to seven different 
symmetry generators, the 5 component of which is readily obtained from equations 
(19) and (20). In addition, there is always the solution 

r = o  5 = c o  
which makes a total of eight symmetries, the maximum one can expect. In table 1 the 
eight generators below ( c ,  + G,, , ) ,  together with their commutation relations in table 2 .  

We observe immediately that the generators G, ,  G2 and G, in the above table 
satisfy the K commutation relations ( 2 )  and hence we know from the proposition that 
we are dealing with SL(3, 9) symmetry. 

For treating case I, we will first solve the homogeneous equation ( 2 5 ) .  The nature 
of the solutions of ( 2 5 )  depends on the way the partial differential operator factorises 
into the composition of three first-order operators. This in turn is directly related to 
the discussion of the nature of the roots of the cubic equation x3 + bx + c = 0. From 
this point of view, it is clear that the situation we have just covered in fact corresponds 
to the case of a triple root for the cubic equation. We therefore next discuss the case 
of a double root and finally the case of three distinct roots. 

3.2. Two q u a l  factors for equation (25) 

Since there is no x2 term in the above-mentioned cubic equation, the sum of the roots 
must be zero. Accordingly, for the case under investigation, we write the factorisation 

Table 1 

Table 2 

GI 0 0 G2 2G3-G1 -3G4 
G2 0 0 0  - Gl 
G3 0 G3 $G,+G, 
G4 0 2 G, 
GS 0 

G7 
G8 

G6 

tG1 G, 

0 ?sGS 

0 tG7 

G2 G3-fGl 
fG3 fG4+iG, 

-fG5 aG8 

0 

4 G5 
-8G4 

2Gs-4G7 
0 
0 

0 
0 

G0 
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of equation (25) in the form 

with a # 0. We then have 

b = -3a2  = -2a3. (32) 

T = f ( q  - 2 ~ ~ 2 )  +g(q + a t ) +  ( 4  - 2 a t ) h ( q  + at )  (33) 

where g and h are as yet arbitrary functions of their arguments. According to the 
results of the previous section, we next have to turn to equations (21) and (24). 
Equation (21) becomes 

The general solution of (31) is given by (compare with (29)) 

-2affff"l+ a(g"'-9~r'g')+ a ( q  - 2 4 ( h " ' - 9 a 2 h ' )  = O  

where the prime denotes differentiation with respect to the appropriate argument. In 
view of the different arguments involved and the fact that a # 0, it follows that we 
must have 

(34) f ' I '  = 0 giff-9a2g'= 0 htif - 9a h = 0. 

The remaining condition (24) then turns out to be identically satisfied. Solving 
equations (34) is a straightforward matter. The resulting solution for 7 takes the form 

T = c, + c,(q - 2 a t )  + c,(q - 2at) '+ c4 sinh 3 a ( q  + a t )  

+ c5 cosh 3 a (  q + at )  + c,(q - 2 a t )  sinh 3a(  q + a t )  

+ c,(q - 2 a t )  cosh 3 a ( q +  at) .  ( 3 5 )  

Just as in  the previous case, this means that we again have a full eight-parameter group 
of symmetries, the generators of which are given in table 3. For shorthand, we introduce 
the new variables 

T = q + a t  Q = q - Z a t .  (36) 
We d o  not list the commutation relations of these generators. They turn out to be 

rather messy and it would be a major task to try and reorganise the set of generators 
in such a way that some standard s1(3 ,9)  pattern would emerge. The hints which 
were explored in the introduction appear to be of great help here for convincing 
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ourselves that we are indeed dealing again with S L ( 3 , 3 )  symmetry. To see this, 
observe that we have 

(37) G, - G, = Q( G, - G6) 

and 

( G, - G6)( 0 1 = 0 ( 3 8 )  

from which it follows that 

[G,-GR, Gg-G6]=0. (39) 

The symmetries G, - G, and G5 - G6 therefore can play the role of Gz and G3 in the 
introductory discussion leading to equation (6) and their transformation to the standard 
form (6) will linearise the equation, meaning that the algebra of symmetries must be 
a representation of s1(3,3).  

3.3. Three distinct factors for equation (25) 

In this case, the factorisation of (25) is 

The constant a thereby is real, whereas y can be real or purely imaginary, depending 
on whether our related cubic equation has three distinct real roots or  one real and two 
complex conjugate roots. In both cases we certainly have 

y f * 3 a  Y # O  (41) 

b = - ( 3 a 2 + y 2 )  c = - 2 a ( a - - y - ) .  

7 = f ( g  - 2at )  + g [ q  + ( a  + y ) t ] +  h [ q  + ( a  - y ) t ] .  

and the expression for the coefficients b and c in terms of a and y is given by 

(42) 

(43 1 

1 ,  

The general solution of (40) is 

Inserting this expression into the remaining conditions (21) and (24) again gives rise 
to simple differential equations for f; g and h and it follows as before that there are 
eight symmetry generators. For writing them down in a real form, one has to make a 
distinction between the case y real and the case y purely imaginary. Since the full 
expressions become rather complicated, we prefer to continue the probe into the nature 
of the algebra after a simplifying transformation. 

3.3.1. Three real roofs. The factorisation (40) of the partial differential equation ( 2 5 )  
means that we are actually looking at the case for which our differential equation (14) 
can be written as 

(44) q = ( 4  - 2 a ) [ 4 + ( a  + r)1[4+(a - Y ) l .  
Under the coordinate transformation 

4 = q + ( a  + y ) t  I =  q + ( a  - y ) t  

equation (44) reduces to the form 
(45) 

q”= ( 3 a  - y ) p -  ( 3 a  + y ) $ .  (46) 
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So we are down to an equation of the type discussed in the appendix. We can further 
reduce it to one of the standard types treated there by the subsequent transformation 

s‘= ( 3 a  - y)q  - f ( 3 a  - y ) r  i= i. (47) 

This brings us to the equation 

$’= p q ( 3 a  + y ) 2  

which clearly is of type (A2). Since we found SL(3 ,  3) symmetry for (A2), we can 
draw the same conclusion about (44) and the symmetry generators, if wanted, can be 
obtained from those in table A l ,  using the transformations (45) and (47). 

3.3.2. One real and two complex conjugate roots. The factorisation (40), with y = iw, 
now relates to a differential equation of the form 

q = ( 4  - 2a)(42+ 2aq + a* + U ’ ) .  (49) 

q = - ( 9 a 2 + w ’ ) t  i =  q -2at (50) 

The transformation 

is found to reduce the cubic right-hand side (49) again to a quadratic one, explicitly 

(51) S” = q” -  6 a q ’ + 9 a 2 +  w 2 .  

Putting 

4 = 4 - 3 a i  i= f (52) 

if’= 4 r 2 + w 2  ( 5 3 )  

eventually brings us to the standard type 

for which the symmetry generators are listed in table A l .  Again, we have S L ( 3 , % )  
symmetry. 

Let us briefly discuss the meaning of the results of this section. When one performs 
an  arbitrary coordinate transformation 

T =  F ( q ,  f )  0 = G(q, t )  (54) 
on the free particle equation Q”=O, there results a differential equation which is at  
most cubic in q. Explicity it becomes 

where, for example, [ F, G]q,q2 is a shorthand notation for 

aFa‘G a’FaG 
[ E  Glq,q2=dq 2-q as‘ 

Equation ( 5 5 )  therefore represents the most general type of second-order differential 
equation which can be linearised by a point transformation. It is not at all obvious 
from this observation that all constant coefficient equations like (12)  are linearisable, 
because this involves imposing four partial differential equations on the two functions 
F and G. Our results, however, show that indeed all equations of type (12) are 
linearisable. Moreover, we started looking at  such equations as representing a whole 
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class of equations which have two commuting symmetries. In this respect, we are now 
able to state the following conclusion: a second-order differential equation which has 
two commuting point symmetries G I ,  G2 (G, not being of the form p(q ,  t)G, for some 
function p )  is linearisable, if and only if the transformation which brings G I ,  G2 into 
standard form (4) reduces the differential equation to one which is at most cubic in q. 

To complete this study, we construct in the next section a linearising transformation 
for all cases we have been led to distinguish. 

4. Linearising transformations 

4.1.  The triple root case 

For the equation 

(56) q = 4 3  

we observed in 0 3 that the algebra { G, , Gz, G3} is K. Now, even though the commuting 
generators G, and G, are in standard form, our equation (56) is not linear! This can 
only mean that we have, so to speak, the wrong coordinate playing the role of t .  The 
transformation 

Q = t  T = q  (57) 

indeed reduces the equation to Q ” =  -1, so that the relation 

Q = -;T*+ c1 T + c2 

through (57) implicitly defines the solution of (56). 

4.2. The double root case 

For a differential equation of the form 

q = ( 4  - 2 a ) ( 4 + a ) 2  (59) 

we know from the discussion in the previous section that a linearisation can be obtained 
if we transform the symmetry generators G5 - G6 and G, - G8 to the form (6). It turns 
out, however, that the coordinates (36), which were merely introduced to simplify the 
notation, d o  the job as well. They reduce equation (59) to the linear equation 

Q ” =  3aQ’ 

whose solution is given by 

Q = c, + c2 e30r. 

The solution of (59) thus is implicitly defined by (61) and the transformation formulae 
( 3 6 ) .  

4.3. The case of three distinct real roots 

In view of the reduction which was achieved in the preceding section, we merely have 
to linearise equation (A2). From the observations in the appendix, it follows that a 
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linearisation will be obtained if we transform for example the symmetries G7 and G, 
to the standard form a/aT, a/aQ. Such a transformation must satisfy the requirements 

or 

-2wr ag - - 0  e - 1  a Q  
G q  a t  
-- 

aT a T  
-+w- -0 ,  

eq-wr- -  a T  
- 1  

aq a t  aq 

We straighforwardly obtain 

and the reduced differential equation becomes Q" = 0. Hence, the relation 

c, e - ~ - ~ ' +  c2 e-2wr  = 1 (64) 

implicitly defines the solution of (A2). For obtaining the solution of (44), we just have 
to replace w by i (3a + y )  and take account of the two linear transformations (45) and 
(47). 

4.4. The case of one real and two complex conjugate roots 

For linearising equation (A4), we can, for example, exploit the fact that the generators 
G, and G, commute and are proportional to each other. Therefore, a transformation 
which reduces G, to a/aQ and G8 to T a /aQ will d o  the job. Such a transformation 
is easily obtained as 

T = tan wt Q = -e-"/cos wt (65) 

and the reduced equation happens to be the free particle equation. As a result, the 
relation 

(66) 

defines the solution of (A4) and obtaining the solution of (49) is just a matter of taking 
further account of the linear transformations (50) and (52). 

(c,  sin wt + c2 cos w t )  eq = 1 

5. Discussion 

The general problem of equivalence for second-order equations ij = H ( q ,  q, 1 )  under 
point transformation was considered by Tresse (1896). He constructed all semi- 
invariants for such equations. For our discussion, however, it suffices to mention only 
the functionally independent order-four semi-invariants of which there are two. The 
vanishing of one of them a4H/aq4 is a necessary condition for linearisation (i.e. 
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reduction to any linear equation such as, for example the free particle equation). This, 
one may recall, also follows from equation ( 5 5 ) .  Furthermore, for an  equation in 
normal form (Arnold 1983) 

4 = A(~)q2+O(/ql3+l4l3) 

the other semi-invariant is the scalar invariant 

I = 5AA - 12A’ 

which is constructed from the differential form of order $, namely 

w = A( t)ldt/5’2 

It turns out that the vanishing of the form w is a necessary condition for linearisation. 
The two conditions w = 0 and a4H/ad4 = 0, however, are sufficient for linearisation. 
The geometric theory of second-order equations, therefore, also provides criteria for 
linearisation. In  this regard we further cite the work of Cartan (1924) who in particular 
investigated second-order equations cubic in the first derivative. The question of 
linearisability of differential equations has recently been discussed by other authors 
as well. We can mention, for example, a paper by Berkovich (1979) on ordinary 
differential equations, quadratic in 4 and a contribution by Kumei and Bluman (1982), 
dealing primarily with systems of partial differential equations. The ideas put forward 
in our paper bear some resemblance to the latter reference, because we discuss 
linearisability in terms of the existence of certain point symmetries of the differential 
equation. 

We have shown that every equation which has two commuting (non-proportional) 
symmetries will be linearisable, provided that the transformation which brings these 
symmetries in their standard form reduces the differential equation to one which is at 
most cubic in 4. An interesting topic for further study would be to find practical criteria 
for testing given second-order differential equations with respect to the existence of 
two such commuting point symmetries. 

We have also observed that, when the equation has two proportional commuting 
symmetries, linearisation is immediate. In this way, we have in fact treated two of the 
four possible cases in the classification of two-dimensional algebras of symmetry 
generators of a single second-order differential equation (Lie 1891). The other two 
cases are characterised by 

[GI 9 G*1 = GI with Gz # p(q ,  f ) G ,  (67) 

or  

[GI 9 G21= GI with Gz=p(g ,  t ) G i .  (68) 

In the latter case, the standard form for the generators is given by G, =a /aQ,  
G, = Qa/aQ and the transformed differential equation is linear in Q’ (Lie 1891). 
Whenever an equation has two point symmetries (681, we can therefore again conclude 
that it will have S L ( 3 , z )  symmetry. Just as it was the case with two commuting 
symmetries, the situation is less trivial when G, and G2 are not proportional, as in 
(67). The standard form of such symmetries then is given by 

a a a e, =- G 2 =  T-+Q- a Q  dT a Q  
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and the transformed differential equation is Q"= T - ' F ( Q ' )  (Lie 1891). The study, 
along the lines of the present paper, of the possible existence of more than two point 
symmetries for the differential equation corresponding to this case is currently under 
investigation. 

Finally, we would like to point out that one can think of generalising this study to 
systems with more than one degree of freedom, whereby the generalisation of the case 
treated in detail here would be the most appealing one. We would then be talking 
about systems 

4 '  =f'(t, q, 4 )  i = l , .  . . , n 

having up  to n + 1 commuting point symmetries, which accordingly can be transformed 
to the standard form a/aT, a/aQ', . . . , a/aQ". 
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Appendix. Quadratic in q equations 

Considering a general equation of the form 

q = aq*+ bq' + c ('41) 

we can perform a preliminary rescaling of q to make a = 1. Having done so, a 
transformation of the form Q = q + fb t  will further eliminate the q term. Henceforth, 
we can restrict our attention to the case where a = 1 and b = 0 in ( A l )  and we have 
to distinguish two different situations. 

A l .  The right-hand side has real roots 

The equation under investigation has the form 

(A2) 

The general symmetry requirement (9) for this case gives rise to the following set of 
partial differential equations: 

q = q 2 - J .  

rq + Tqq = 0 

24 - 2qq + 2rrq = 0 

221-3w2rq-25rq+r,, = o  
2 w2&* - 2w rr - = 0. 

They can easily be solved and  are found to produce the eight symmetry generators 
given in table A l .  
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Table A1 

Their commutation relations are given in table 5 .  It is clear from this table that, 
for example, {G3, G6, G,} constitute the K algebra, from which it follows that the 
symmetry group of equation (A2) is SL(3,%). We recall that the linearising transforma- 
tion is given by (63), thereby reducing (A2) to the free particle equation. 

A2. The right-hand side has complex roots 

We are now talking about an equation of the form 
q=q*+u .  2 

Table A2 

GI G2 G3 G4 G5 G6 G7 G8 

G, 0 0 0 0 -Gs -G6 G7 G8 

G2 0 -2wG3 2wG4 w G s  -wG6 -wG6 wG8 
G3 0 4wG2 2wG6 0 0 2wG7 
G4 0 0 -2wG5 -2wG8 0 
G5 0 0 G 2 - 3 w G 1  G4 
G6 0 G3 G 2 + 3 w G ,  
G7 0 0 
G8 0 

7 0 1 COS 2 W t  sin 2wt eW4 sin wt e-4 cos w '  0 0 
6 1 0 w sin 2wt -U cos 2wt -w  cos w t  w e-4 sin wt e 4  cos ut e4 sin wt 

Table A4 
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The partial differential equations for obtaining all point symmetries of (A4) of course 
differ only slightly from (A3). We again find eight generators which are listed in table 
A3. The commutator algebra is given in table A4. The K subalgebra is found with 
the generators { G, , G,, t (  G2 + G3)} or { G5, G6,  t( G2 + G3)}. So it is by now no longer 
a surprise that we again have S L ( 3 , 9 )  symmetry. The linearisation of (A4) via point 
transformation is given by (65). Once more the transformed equation is the free particle 
equation. 
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